黎曼的成就
黎曼大家都非常熟悉,在数学分析上,我们会学到很多关于黎曼的定理,黎曼的一生当中,可以说是研究成果非常丰富的,他出生在一个传统的牧师家庭,最初是按照父亲的意愿去学习神学,但是由于兴趣使然,后来黎曼转专业开始后研究数学。
黎曼图片
黎曼的成就在数学可以很清楚的看出来,最开始在老师狄利克雷的指导下,他论证了复变函数可导的充分条件,这是黎曼敲开了数学研究的第一块砖,而从此,黎曼开始在微分几何的相关研究上不断取得全新的进展,他也首次提出了黎曼空间的概念,把当时时代上已知的欧式和非欧式几何通通都归到了黎曼空间的范畴之中。
在贝塔函数上,黎曼的成就也非常大,他在当时他的一篇论文中第一次提到了黎曼曲面,这也是一个非常重要的发现,而把贝塔函数和贝塔积分作为一个全新的研究对象,在当时的数学史上,更是一个转折点,这样的观念对于现代代数拓扑的发展也极为重要。而在黎曼这些研究的指导下,罗赫做了一定的补充,形成了后来非常著名的黎曼罗赫定理。
虽然在数学上的研究上,黎曼可以说是功不可没,但是长时间高强度的脑力劳动对于黎曼的健康影响非常大,他在晚年的健康状况非常糟糕,并且几乎没有办法继续工作,在一次去意大利的有氧过程中,因为肺结核感染,黎曼去世了,而伴随着他的去世我们失去了一位成就卓越的数学家,但是他对于数学研究所做出来的那些贡献却伴随着现代人。
黎曼函数
说起黎曼,不能不提起他的黎曼函数。作为先后多次在数学大会上被提及的数学难题,这一函数一个多世纪以来一直是数学家们关注的焦点。说起这一函数,其提出的时间是在1859年,当时虽然距离今天已经过去了整整一个半世纪,但却一直都有着极大的影响,甚至成为现如今很多数学家研究论证的对象。
黎曼图片
而到底什么是黎曼函数呢?其实这是一种比较特殊的函数,之前并没有任何人提出过,是颇具盛名的黎曼首先提出来的。黎曼的这一函数定义在[0,1]上,而且函数中的R(x)=1/q,当x=p/q(p,q都属于正整数,p/q为既约真分数)的时候,R(x)=0,后来,这一函数在高等数学中经常被用到,对后来的学科产生了不能替代的影响,并且能够在很多情况下,用来作为反例来证明很多函数方面的命题,对世界各国的数学都有一定的影响。
而从黎曼的函数中得出来的推论也有不少。其中一个便是其函数在(0,1)内的所有无理点处处都有连续,反过来,所有的有理点处处都不连续。另外一个推论则是,该函数在区间[0,1]上是黎曼可积的。从其中也衍生出很多数学上的思索。
黎曼的函数关于无理点、有理点、连续以及不连续的说法,现在也是数学家们研究的对象。后来,还有尼日利亚的数学家对其函数进行过论证,但是并没有得到明确的证明。
黎曼猜想
作为历史上伟大的数学家,黎曼给后人留下印象最为深刻的估计就要属黎曼猜想了。1859年,当时的黎曼刚好被选为了柏林科学院地位不一般的通信院士,而作为对这一至高荣誉的回报,当年,黎曼向学院提交了一篇论文,而这篇论文,正好成为知名的黎曼猜想的来源。